首页> 外文会议>IEEE International Conference on Acoustics, Speech and Signal Processing;ICASSP 2009 >Data-driven lexicon expansion for Mandarin broadcast news and conversation speech recognition
【24h】

Data-driven lexicon expansion for Mandarin broadcast news and conversation speech recognition

机译:数据驱动的词典扩展,用于普通话广播新闻和对话语音识别

获取原文

摘要

We present a data-driven framework for expanding the lexicon to improve Mandarin broadcast news and conversation speech recognition. The lexicon expansion includes the generation of pronunciation variants for frequent words and vocabulary augmentation with new words and phrases derived from the training data. To learn multiple pronunciations, we first generate all possible pronunciation candidates for a word from its character pronunciation network. The top pronunciation variants are then selected from forced alignment statistics. To augment the acoustic vocabulary, we propose an efficient algorithm that derives new words based on N-gram statistics. Experiments show that a dictionary expanded in this manner yields significant improvements on a Mandarin broadcast speech recognition task.
机译:我们提供了一个数据驱动的框架,用于扩展词典以改善普通话广播新闻和对话语音识别。词典扩展包括针对频繁单词的发音变体的生成,以及使用从训练数据中导出的新单词和短语来增强词汇量。要学习多种发音,我们首先从其字符发音网络生成所有可能的单词候选单词。然后从强制对齐统计信息中选择最高级的发音变体。为了增加声学词汇量,我们提出了一种有效的算法,该算法可基于N元语法统计导出新单词。实验表明,以这种方式扩展的词典对普通话广播语音识别任务产生了重大改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号