首页> 外文会议>IEEE International Conference on Acoustics, Speech and Signal Processing;ICASSP 2009 >ICA-based efficient blind dereverberation and echo cancellation method for barge-in-able robot audition
【24h】

ICA-based efficient blind dereverberation and echo cancellation method for barge-in-able robot audition

机译:基于ICA的有效驳入残障机器人听觉去混响和回声消除方法

获取原文

摘要

This paper describes a new method that allows ldquoBarge-Inrdquo in various environments for robot audition. ldquoBarge-inrdquo means that a user begins to speak simultaneously while a robot is speaking. To achieve the function, we must deal with problems on blind dereverberation and echo cancellation at the same time. We adopt Independent Component Analysis (ICA) because it essentially provides a natural framework for these two problems. To deal with reverberation, we apply a Multiple Input/Output INverse-filtering Theorem-based model of observation to the frequency domain ICA. The main problem is its high-computational cost of ICA. We reduce the computational complexity to the linear order of reverberation time by using two techniques: 1) a separation modelbased on observed signal independence, and 2) enforced spatial sphering for preprocessing. The experimental results revealed that our method improved word correctness of reverberant speech by 10-20 points.
机译:本文介绍了一种允许ldquoBarge-Inrdquo在各种环境中进行机器人试听的新方法。 ldquoBarge-inrdquo表示用户在机器人讲话的同时开始讲话。要实现此功能,我们必须同时处理盲混响和回声消除问题。我们采用独立成分分析(ICA),因为它本质上为这两个问题提供了自然的框架。为了处理混响,我们将基于多重输入/输出逆滤波定理的观测模型应用于频域ICA。主要问题是ICA的计算成本高。我们通过使用两种技术将计算复杂度降低到混响时间的线性顺序:1)基于观察到的信号独立性的分离模型,以及2)强制进行预处理的空间球化。实验结果表明,我们的方法将混响语音的单词正确性提高了10-20点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号