首页> 外文会议>IEEE International Conference on Acoustics, Speech and Signal Processing;ICASSP 2009 >Acoustic fall detection using Gaussian mixture models and GMM supervectors
【24h】

Acoustic fall detection using Gaussian mixture models and GMM supervectors

机译:使用高斯混合模型和GMM超向量的声音跌倒检测

获取原文

摘要

We present a system that detects human falls in the home environment, distinguishing them from competing noise, by using only the audio signal from a single far-field microphone. The proposed system models each fall or noise segment by means of a Gaussian mixture model (GMM) supervector, whose Euclidean distance measures the pairwise difference between audio segments. A support vector machine built on a kernel between GMM supervectors is employed to classify audio segments into falls and various types of noise. Experiments on a dataset of human falls, collected as part of the Netcarity project, show that the method improves fall classification F-score to 67% from 59% of a baseline GMM classifier. The approach also effectively addresses the more difficult fall detection problem, where audio segment boundaries are unknown. Specifically, we employ it to reclassify confusable segments produced by a dynamic programming scheme based on traditional GMMs. Such post-processing improves a fall detection accuracy metric by 5% relative.
机译:我们提出了一种仅使用来自单个远场麦克风的音频信号,就可以检测家庭环境中的人类跌倒并将其与竞争性噪声区分开的系统。所提出的系统通过高斯混合模型(GMM)超向量对每个跌落或噪声片段进行建模,其超欧氏距离可测量音频片段之间的成对差异。支持向量机建立在GMM超向量之间的内核上,用于将音频片段分类为跌倒和各种类型的噪声。作为Netcarity项目一部分收集的人类跌倒数据集的实验表明,该方法将跌倒分类F分数从基线GMM分类器的59%提高到了67%。该方法还有效地解决了更困难的跌倒检测问题,其中音频段边界是未知的。具体来说,我们使用它来对基于传统GMM的动态编程方案产生的可混淆段进行重新分类。这种后处理使跌倒检测准确度指标提高了5%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号