首页> 外文会议>IEEE International Conference on Acoustics Speech and Signal;ICASSP 2010 >Scaled factorial hidden Markov models: A new technique for compensating gain differences in model-based single channel speech separation
【24h】

Scaled factorial hidden Markov models: A new technique for compensating gain differences in model-based single channel speech separation

机译:比例因子隐式马尔可夫模型:一种新的基于模型的单通道语音分离中补偿增益差异的技术

获取原文

摘要

V(t)), the performance of FHMM degrades significantly. In this paper, we introduce a modification to FHMM, called scaled FHMM, which compensates gain difference. In this technique, first, the scale factors are expressed in terms of the target-to-interference ratio (TIR). Then, an iteration quadratic optimization approach is coupled with FHMM to estimate TIR which with the decoded HMM sequences maximize the likelihood of the mixture signal. Experimental results, conducted on 180 mixtures with TIRs from 0 to 15 dB, show that the proposed technique significantly outperforms unscaled FHMM, and scaled/unscaled vector quantization speech separation techniques.
机译:V(t)),FHMM的性能将大大降低。在本文中,我们介绍了对FHMM的一种改进,称为缩放FHMM,它可以补偿增益差异。在这种技术中,首先,比例因子是根据目标干扰比(TIR)表示的。然后,将迭代二次优化方法与FHMM耦合以估计TIR,该TIR与已解码的HMM序列可将混合信号的可能性最大化。在180种具有0至15 dB的TIR的混合物上进行的实验结果表明,所提出的技术明显优于未缩放的FHMM和缩放/未缩放的矢量量化语音分离技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号