首页> 外文会议>IEEE International Conference on Acoustics Speech and Signal;ICASSP 2010 >Blind Separation methods based on correlation for sparse possibly-correlated images
【24h】

Blind Separation methods based on correlation for sparse possibly-correlated images

机译:基于相关的稀疏可能相关图像盲分离方法

获取原文

摘要

In this paper, we propose Blind Source Separation (BSS) methods for possibly-correlated images, based on a low sparsity assumption. To satisfy this sparsity condition, one of the versions of our methods applies a wavelet transform to the observed images before performing separation. Another version directly operates in the original spatial domain, when the sources are sparse enough in this domain. Both methods consist in finding, in the considered sparse representation domain, tiny zones where only one source is active. The column of the mixing matrix corresponding to this source is then estimated in this zone. We also propose extensions of these methods, with automated selection of adequate analysis parameters. Various tests show the good performance of these approaches (SIR improvement often higher than 40 dB).
机译:在本文中,我们基于低稀疏性假设为可能相关的图像提出了盲源分离(BSS)方法。为了满足这种稀疏条件,我们的方法的一种版本在执行分离之前对观察到的图像应用了小波变换。当源在此空间中足够稀疏时,另一个版本将直接在原始空间域中运行。两种方法都在于在所考虑的稀疏表示域中找到只有一个源处于活动状态的微小区域。然后在该区域中估计与该源相对应的混合矩阵的列。我们还建议扩展这些方法,并自动选择适当的分析参数。各种测试显示了这些方法的良好性能(SIR改善通常高于40 dB)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号