首页> 外文会议>IEEE International Conference on Acoustics, Speech and Signal Processing;ICASSP >Anti-sparse coding for approximate nearest neighbor search
【24h】

Anti-sparse coding for approximate nearest neighbor search

机译:反稀疏编码,用于近似最近邻居搜索

获取原文

摘要

This paper proposes a binarization scheme for vectors of high dimension based on the recent concept of anti-sparse coding, and shows its excellent performance for approximate nearest neighbor search. Unlike other binarization schemes, this framework allows, up to a scaling factor, the explicit reconstruction from the binary representation of the original vector. The paper also shows that random projections which are used in Locality Sensitive Hashing algorithms, are significantly outperformed by regular frames for both synthetic and real data if the number of bits exceeds the vector dimensionality, i.e., when high precision is required.
机译:本文基于反稀疏编码的最新概念,提出了一种高维向量的二值化方案,并展示了其在近似最近邻搜索中的出色性能。与其他二值化方案不同,此框架允许在不超出比例因子的情况下从原始矢量的二进制表示形式进行显式重构。该论文还表明,如果位数超过矢量维数(即要求高精度),则对于合成和真实数据,规则敏感帧都将优于局部敏感哈希算法中使用的随机投影。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号