【24h】

A general form of 2D Fourier transform eigenfunctions

机译:二维傅立叶变换本征函数的一般形式

获取原文

摘要

In this paper, the general form of the two-dimensional Fourier transform (2D FT) eigenfunctions is discussed. It is obtained from the linear combination of the 2D separable Hermite Gaussian functions (SHGFs). For example, the rotated Hermite Gaussian functions (RHGFs) for the rotated coordinate and the Laguerre Gaussian functions (LGFs) for the polar coordinate are two special cases of the general form. With the aid of the general form, we can achieve these 2D functions with perfect orthogonality. Finding the combination coefficients is equivalent to the multinomial expansion problem. Therefore, we can apply the fast Fourier transform and some recurrence relations to the coefficients. The computation cost is much less than the close-form coefficients, which is associated with the Jacobi polynomials.
机译:本文讨论了二维傅立叶变换(2D FT)本征函数的一般形式。它是从2D可分离的Hermite高斯函数(SHGF)的线性组合获得的。例如,用于旋转坐标的旋转Hermite高斯函数(RHGF)和用于极坐标的Laguerre高斯函数(LGF)是一般形式的两种特殊情况。借助通用形式,我们可以实现具有完美正交性的2D功能。找到组合系数等效于多项式展开问题。因此,我们可以对系数应用快速傅里叶变换和一些递归关系。计算成本远小于与Jacobi多项式相关联的近似形式系数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号