首页> 外文会议>IEEE Data Driven Control and Learning Systems Conference >Moving Object Real-time Detection and Tracking Method Based on Improved Gaussian Mixture Model
【24h】

Moving Object Real-time Detection and Tracking Method Based on Improved Gaussian Mixture Model

机译:基于改进高斯混合模型的运动目标实时检测与跟踪方法

获取原文

摘要

In order to improve the reliability of moving objects detection and tracking, this paper presents a method for moving object real-time detection and tracking based on Vibe and Gaussian mixture model (GMM). This method uses the 'Virtual' background model that is trained by video sequence instead of the first frame image for background modeling. And then the foreground object is extracted based on the pixel classification. Finally, according to the morphological method, the clearer moving targets are conducted to realize the real-time detection and tracking. The experimental results show that, in comparison with the current mainstream background subtraction techniques, our approach effectively works on a wide range of complex scenarios, with faster detection speed and more reliable detection results.
机译:为了提高运动目标检测与跟踪的可靠性,提出了一种基于Vibe和高斯混合模型(GMM)的运动目标实时检测与跟踪的方法。此方法使用通过视频序列训练的“虚拟”背景模型,而不是用于背景建模的第一帧图像。然后根据像素分类提取前景物体。最后,根据形态学方法,对运动目标进行了更清晰的识别,以实现实时的检测和跟踪。实验结果表明,与当前主流的背景扣除技术相比,我们的方法有效地适用于各种复杂场景,具有更快的检测速度和更可靠的检测结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号