首页> 外文会议>IEEE Data Driven Control and Learning Systems Conference >A Prediction Approach on Energy Consumption for Public Buildings Using Mind Evolutionary Algorithm and BP Neural Network
【24h】

A Prediction Approach on Energy Consumption for Public Buildings Using Mind Evolutionary Algorithm and BP Neural Network

机译:基于心态进化算法和BP神经网络的公共建筑能耗预测方法

获取原文

摘要

This paper proposes a prediction approach on energy consumption for public buildings based on mind evolutionary algorithm and BP neural network. The actual real-time data of some layer in a public building can be obtained online by our implemented building monitoring system, then several key factors which affect building energy consumption can be analyzed and determined by correlation analysis method. By using the mind evolutionary algorithm, the ideal weight values and threshold values of BP neural network are calculated, which can solve its problems of low efficiency and slow convergence. Finally, the performance and effectiveness of the proposed forecasting model are demonstrated through a case study of a building energy consumption monitoring system from practical engineering.
机译:提出了一种基于思维进化算法和BP神经网络的公共建筑能耗预测方法。通过我们已实施的建筑物监控系统,可以在线获取公共建筑物中某一层的实际实时数据,然后可以使用相关分析方法来分析和确定影响建筑物能耗的几个关键因素。利用思维进化算法,计算出了理想的BP神经网络权值和阈值,可以解决BP神经网络效率低,收敛速度慢的问题。最后,通过实际工程中建筑能耗监测系统的案例研究,证明了所提出的预测模型的性能和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号