首页> 外文会议>IEEE Data Driven Control and Learning Systems Conference >Wind Turbine Unit Power Prediction Based on Wavelet Neural Network Optimized by Brain Storm Optimization Algorithm
【24h】

Wind Turbine Unit Power Prediction Based on Wavelet Neural Network Optimized by Brain Storm Optimization Algorithm

机译:基于小波神经网络优化的小波神经网络的风电机组功率预测

获取原文

摘要

The construction of the wind power curve is of great significance to the wind turbines. Based on the accurate model of wind power curve developed, it can be employed for the wind power prediction and fault diagnosis. Normally, the wind turbine manufacturer provides the standard wind power curve, which is measured at standard conditions. However, the actual situation of the wind turbine is different from the standard state and is constantly changing. The wind power curve needs to be modified. The wind power curve essentially establishes a functional relationship between wind speed and active power. The neural networks have the ability to approximate function. In this paper, based on the actual data from a wind farm in Shanxi Province, the wavelet neural network is used to model the wind power curve, and the initial parameters are determined by using the brain storm optimization algorithm. The probability of the non-convergence in the learning process of the wavelet neural network is greatly reduced. Extensive experimental results are presented to validate the effectiveness of the proposed approach.
机译:风能曲线的构建对风力涡轮机具有重要意义。基于所开发的精确的风电曲线模型,可用于风电预测和故障诊断。通常,风力涡轮机制造商会提供标准风力曲线,该曲线是在标准条件下测得的。然而,风力涡轮机的实际情况不同于标准状态并且在不断变化。风能曲线需要修改。风能曲线从根本上建立了风速和有功功率之间的函数关系。神经网络具有近似功能的能力。本文基于山西某风电场的实际数据,利用小波神经网络对风电曲线进行建模,并通过脑风暴优化算法确定了初始参数。小波神经网络学习过程中不收敛的可能性大大降低。提出了广泛的实验结果,以验证所提出方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号