首页> 外文会议>IEEE Data Driven Control and Learning Systems Conference >A Data-driven System-level Health State Prognostics Method for Large-scale Spacecraft Systems
【24h】

A Data-driven System-level Health State Prognostics Method for Large-scale Spacecraft Systems

机译:大型航天器系统的数据驱动系统级健康状态预测方法

获取原文

摘要

Large-scale spacecraft, such as space station, highlights the systems' reliability and safety. Using prognostics to predict the trend of the system health state evolution can help find out the potential dangers and prevent the unexpected failure from happening. With the adoption of data-driven ideology, a system-level health state prognostics method is proposed to predict the trend information. First, the characteristics of the large-scale spacecraft and the system-level health definition are analyzed. Then the details of the solution method are described. The novelty of this method is to use the network science knowledge to extract the system-level features. The adopted predicting method is briefly introduced. Finally, a real case study with on-orbit telemetry data is presented, and relevant conclusions are drawn for reference.
机译:大型航天器,例如空间站,突出了系统的可靠性和安全性。使用预测来预测系统健康状态演变的趋势可以帮助发现潜在的危险并防止意外故障的发生。通过采用数据驱动的思想,提出了一种系统级的健康状态预测方法来预测趋势信息。首先,分析了大型航天器的特性和系统级的健康定义。然后描述解决方法的细节。这种方法的新颖之处在于利用网络科学知识来提取系统级特征。简要介绍了采用的预测方法。最后,给出了在轨遥测数据的真实案例研究,并得出相关结论供参考。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号