首页> 外文会议>IEEE China Summit International Conference on Signal and Information Processing >Improving hyperspectral image classification accuracy using Iterative SVM with spatial-spectral information
【24h】

Improving hyperspectral image classification accuracy using Iterative SVM with spatial-spectral information

机译:使用具有空间光谱信息的迭代SVM提高高光谱图像分类的准确性

获取原文

摘要

Hyper-Spectral Images (HSI) classification is one of essential problems in hyperspectral image processing and one of the major difficulties in supervised hyperspectral image classification is the limited availability of training data, as it is hard to obtain in real remote sensing scenarios. In this paper we have presented our proposed approach to improve the accuracy of HSI in the situations where the training samples are very limited and also where we attain misclassification due to random training samples. Our proposed approach is based on the Iterative Support Vector Machine (ISVM) and also on the spatial and spectral information. In order to improve the performance of ISVM, the Majority Voting (MV) and the marker map correction techniques are used to correct the training samples at each iteration of ISVM. Experiments on practical Hyperspectral images including AVIRIS Indian Pine Image are conducted and the results shown that the proposed approach works better than ISVM and other classifiers such as SVM-RBF, Linear-SVM and K-NN.
机译:高光谱图像(HSI)分类是高光谱图像处理中的基本问题之一,监督性高光谱图像分类的主要困难之一是训练数据的可用性有限,因为在实际的遥感方案中很难获得。在本文中,我们介绍了在训练样本非常有限的情况下以及由于随机训练样本而导致分类错误的情况下,提高HSI准确性的提议方法。我们提出的方法基于迭代支持向量机(ISVM)以及空间和频谱信息。为了提高ISVM的性能,多数投票(MV)和标记图校正技术用于在ISVM的每次迭代中校正训练样本。进行了包括AVIRIS印度松图像在内的实际高光谱图像的实验,结果表明,该方法比ISVM和其他分类器(例如,SVM-RBF,Linear-SVM和K-NN)更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号