首页> 外文会议>IEEE China Summit International Conference on Signal and Information Processing >Trajectory-based human activity recognition with hierarchical dirichlet process hidden Markov models
【24h】

Trajectory-based human activity recognition with hierarchical dirichlet process hidden Markov models

机译:基于轨迹的人类活动识别及分层狄利克雷过程隐马尔可夫模型

获取原文

摘要

Trajectory-based human activity recognition aims at understanding human behaviors in video sequences. Some existing approaches to this problem, e.g., hidden Markov models (HMM), have a severe limitation, namely the number of motions has to be preset. In fact, this number is difficult to define in advance in real practice. To overcome this shortcoming, we propose a new method for modeling human trajectories based on the hierarchical Dirichlet process hidden Markov models (HDP-HMM), and adopt a Gibbs sampling algorithm for model training. Using our proposed technique, the number of motions can be inferred automatically from data and is also allowed to vary among different classes of activities. Experiments on both synthetic and real data sets demonstrate the effectiveness of our approach.
机译:基于轨迹的人类活动识别旨在了解视频序列中的人类行为。解决该问题的一些现有方法,例如,隐马尔可夫模型(HMM),存在严重的局限性,即必须预先设置运动次数。实际上,在实际实践中很难预先定义此数字。为了克服这一缺点,我们提出了一种基于分层狄利克雷过程隐马尔可夫模型(HDP-HMM)的人体轨迹建模的新方法,并采用Gibbs采样算法进行模型训练。使用我们提出的技术,可以从数据中自动推断动作的数量,并且还可以在不同类别的活动之间进行更改。综合和真实数据集上的实验证明了我们方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号