首页> 外文会议>IEEE China Summit International Conference on Signal and Information Processing >Magnetic resonance image reconstruction using similarities learnt from multi-modal images
【24h】

Magnetic resonance image reconstruction using similarities learnt from multi-modal images

机译:利用从多模式图像中学习到的相似性来进行磁共振图像重建

获取原文

摘要

Compressed sensing has shown great potential to speed up magnetic resonance imaging (MRI) assuming the image is sparse and compressible in a transform domain. Conventional methods typically use a pre-defined sparsifying transform such as wavelets or finite difference, which sometimes does not lead to a sufficient sparse representation. In this paper, we design a patch-based nonlocal operator (PANO) to model the sparsity between image patches. The linearity of PANO allows us to establish a general formulation to reconstruct magnetic resonance image from undersampled data and provides feasibility to incorporate prior information learnt from guide images. To demonstrate the feasibility and performance of PANO, learning similarities from multi-modal images are presented to significantly improve the reconstructed images over conventional redundant wavelets in terms of visual quality and reconstruction errors.
机译:假设图像在变换域中稀疏且可压缩,则压缩感测已显示出极大的潜力来加速磁共振成像(MRI)。常规方法通常使用预定义的稀疏变换,例如小波或有限差分,这有时不会导致足够的稀疏表示。在本文中,我们设计了基于补丁的非局部算子(PANO)来建模图像补丁之间的稀疏性。 PANO的线性允许我们建立一个通用公式,从欠采样的数据中重建磁共振图像,并为合并从引导图像中学习到的先验信息提供了可行性。为了证明PANO的可行性和性能,提出了从多模式图像中学习相似性的方法,以在视觉质量和重建误差方面比传统的冗余小波显着改善重建的图像。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号