首页> 外文会议>IEEE Congress on Evolutionary Computation;CEC '09 >Investigation of memory-based multi-objective optimization evolutionary algorithm in dynamic environment
【24h】

Investigation of memory-based multi-objective optimization evolutionary algorithm in dynamic environment

机译:动态环境中基于内存的多目标优化进化算法研究

获取原文

摘要

As the research of dynamic optimization arising, memory-based strategy has gained public attention recently. However, few studies on developing dynamic multi-objective optimization algorithms and even fewer studies on multi-objective memory-based strategy were reported previously. In this paper, we try to address such an issue by proposing several memory-based multi-objective evolutionary algorithms and experimentally investigating different multi-objective dynamic optimization schemes, which include restart, explicit memory, local search memory and hybrid memory schemes. This study is to provide pre-trial research of how to appropriately organize and effectively reuse the changed Pareto-optimal decision values (i.e., Pareto-optimal solutions: POS) information.
机译:随着动态优化研究的兴起,基于内存的策略近来得到了公众的关注。但是,以前很少有关于开发动态多目标优化算法的研究,甚至很少有关于基于多目标记忆的策略的研究。在本文中,我们尝试通过提出几种基于内存的多目标进化算法并实验研究不同的多目标动态优化方案(包括重新启动,显式内存,局部搜索内存和混合内存方案)来解决这一问题。这项研究旨在提供有关如何正确组织和有效重用已更改的帕累托最优决策值(即帕累托最优解决方案:POS)信息的预试验研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号