首页> 外文会议>IEEE Conference on Computational Intelligence for Financial Engineering Economics >Empirical analysis of model selection criteria for genetic programming in modeling of time series system
【24h】

Empirical analysis of model selection criteria for genetic programming in modeling of time series system

机译:时间序列系统建模中遗传规划模型选择准则的实证分析

获取原文

摘要

Genetic programming (GP) and its variants have been extensively applied for modeling of the stock markets. To improve the generalization ability of the model, GP have been hybridized with its own variants (gene expression programming (GEP), multi expression programming (MEP)) or with the other methods such as neural networks and boosting. The generalization ability of the GP model can also be improved by an appropriate choice of model selection criterion. In the past, several model selection criteria have been applied. In addition, data transformations have significant impact on the performance of the GP models. The literature reveals that few researchers have paid attention to model selection criterion and data transformation while modeling stock markets using GP. The objective of this paper is to identify the most appropriate model selection criterion and transformation that gives better generalized GP models. Therefore, the present work will conduct an empirical analysis to study the effect of three model selection criteria across two data transformations on the performance of GP while modeling the stock indexed in the New York Stock Exchange (NYSE). It was found that FPE criteria have shown a better fit for the GP model on both data transformations as compared to other model selection criteria.
机译:遗传编程(GP)及其变体已广泛应用于股票市场建模。为了提高模型的泛化能力,GP已与其自身的变体(基因表达编程(GEP),多表达编程(MEP))或其他方法(例如神经网络和Boosting)杂交。 GP模型的泛化能力还可以通过适当选择模型选择标准来提高。过去,已经应用了几种模型选择标准。此外,数据转换对GP模型的性能也有重大影响。文献表明,很少有研究者在使用GP进行股票市场建模时关注模型选择标准和数据转换。本文的目的是确定最合适的模型选择标准和转换,以提供更好的通用GP模型。因此,本工作将进行实证分析,以在对纽约证券交易所(NYSE)索引的股票建模时,研究两次数据转换中的三种模型选择标准对GP性能的影响。结果发现,与其他模型选择标准相比,FPE标准在两个数据转换中都显示出更适合GP模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号