首页> 外文会议>2019 IEEE 9th Symposium on Computer Applications amp; Industrial Electronics >Data Mining Techniques for Transformer Failure Prediction Model: A Systematic Literature Review
【24h】

Data Mining Techniques for Transformer Failure Prediction Model: A Systematic Literature Review

机译:变压器故障预测模型的数据挖掘技术:系统文献综述

获取原文
获取原文并翻译 | 示例

摘要

Transformer failure may occur in terms of tripping, resulting in an unplanned or unseen failure. Therefore, a good maintenance strategy is an essential component of a power system to prevent unanticipated failures. Routine preventive maintenance programs have traditionally been used in combination with regular tests. However, in recent years, predictive maintenance has become prevalent due to the demanding industrial needs. Due to the increased requirement, utilities are persistently looking for ways to overcome the challenge of power transformer failures. One of the most popular ways for fault prediction is data mining. Data mining techniques can be applied in transformer failure prediction to provide the possibility of failure occurrence. Thus, this study aims to identify the common data mining techniques and algorithms that are implemented in studies related to various transformer failure types. The accuracy of each algorithm is also studied in this paper. A systematic literature review is carried out by identifying 160 articles from four main databases of which 6 articles are chosen in the end. This review found that the most common prediction technique used is classification. Among the classification algorithms, ANN is the prominent algorithm adopted by most of the researchers which has provided the highest accuracy compared to other algorithms. Further research can be done to investigate more on the transformer failures types and fair comparison between multiple algorithms in order to get more precise performance measurement.
机译:变压器故障可能会因跳闸而发生,从而导致计划外或看不见的故障。因此,良好的维护策略是防止意外故障的电源系统的重要组成部分。传统上,常规预防性维护程序已与常规测试结合使用。然而,近年来,由于苛刻的工业需求,预测性维护已变得普遍。由于需求增加,公用事业公司一直在寻找克服电力变压器故障挑战的方法。故障预测最流行的方法之一是数据挖掘。数据挖掘技术可以应用于变压器故障预测中,以提供发生故障的可能性。因此,本研究旨在确定在与各种变压器故障类型相关的研究中实施的通用数据挖掘技术和算法。本文还研究了每种算法的准确性。通过从四个主要数据库中识别出160篇文章进行系统的文献综述,最后选择了6篇文章。这篇评论发现,最常用的预测技术是分类。在分类算法中,ANN是大多数研究人员采用的杰出算法,与其他算法相比,它提供了最高的准确性。为了获得更精确的性能测量,可以做进一步的研究来研究更多的变压器故障类型以及多种算法之间的合理比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号