首页> 外文会议>ICT International Student Project Conference >A Food Photography App with Image Recognition for Thai Food
【24h】

A Food Photography App with Image Recognition for Thai Food

机译:带有图像识别功能的泰国食品美食摄影应用程序

获取原文

摘要

In this paper, we present a food photography application for smart phones, which can recognise 13 types of Thai food from photos. With this feature, the application can easily help users calculate their calories and make some suggestion, just by keep taking a photo of food they are eating. Our application uses React Native for the front-end, and Python-Flask for the back-end. For image recognition, we design a deep convolutional neural network to learn from our dataset. Moreover, we compare the result of our model with another model adapted from the famous one of Karen Simonyan andAndrew Zisserman called VGG19. We use transfer learning from the pre-trained VGG19, implementing with Keras and Tensorflow. Our result shows that the transfer learning model is better. It give us approximately 82% test accuracy or 18% top-1 error rate. Using top-3 and top-5 scores, The model reports 2.6% top-3 error rate and 1.3% top-5 error rate, which works well in our application.
机译:在本文中,我们提出了一种用于智能手机的食品摄影应用程序,该应用程序可以从照片中识别出13种泰国食品。借助此功能,该应用程序只需不断拍摄自己所吃食物的照片,即可轻松帮助用户计算卡路里并提出一些建议。我们的应用程序在前端使用React Native,在后端使用Python-Flask。对于图像识别,我们设计了一个深度卷积神经网络以从我们的数据集中学习。此外,我们将模型的结果与由著名的Karen Simonyan和Andrew Zisserman改编的另一个模型VGG19进行了比较。我们使用来自预训练的VGG19的转移学习,并与Keras和Tensorflow一起实施。我们的结果表明,转移学习模型更好。它给我们大约82%的测试准确度或18%的top-1错误率。使用top-3和top-5分数,该模型报告2.6%的top-3错误率和1.3%的top-5错误率,在我们的应用程序中效果很好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号