首页> 外文会议>ICPR 2012;International Conference on Pattern Recognition >Foreground detection via robust low rank matrix factorization including spatial constraint with Iterative reweighted regression
【24h】

Foreground detection via robust low rank matrix factorization including spatial constraint with Iterative reweighted regression

机译:通过鲁棒的低秩矩阵分解进行前景检测,包括空间约束和迭代加权加权回归

获取原文

摘要

Foreground detection is the first step in video surveillance system to detect moving objects. Robust Principal Components Analysis (RPCA) shows a nice framework to separate moving objects from the background. The background sequence is then modeled by a low rank subspace that can gradually change over time, while the moving foreground objects constitute the correlated sparse outliers. In this paper, we propose to use a low-rank matrix factorization with IRLS scheme (Iteratively reweighted least squares) and to address in the minimization process the spatial connexity of the pixels. Experimental results on the Wallflower and I2R datasets show the pertinence of the proposed approach.
机译:前景检测是视频监视系统中检测移动物体的第一步。稳健的主成分分析(RPCA)显示了一个很好的框架,可以将移动的对象与背景分离。然后,通过低阶子空间对背景序列进行建模,该子序列可以随时间逐渐变化,而移动的前景对象则构成了相关的稀疏离群值。在本文中,我们建议使用带IRLS方案的低秩矩阵分解(迭代最小加权最小二乘),并在最小化过程中解决像素的空间连接性。在Wallflower和I2R数据集上的实验结果表明了该方法的相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号