...
首页> 外文期刊>IEEE Transactions on Signal Processing >Alternating Iteratively Reweighted Least Squares Minimization for Low-Rank Matrix Factorization
【24h】

Alternating Iteratively Reweighted Least Squares Minimization for Low-Rank Matrix Factorization

机译:低秩矩阵分解的交替迭代加权最小二乘最小化

获取原文
获取原文并翻译 | 示例

摘要

Nowadays, the availability of large-scale data in disparate application domains urges the deployment of sophisticated tools for extracting valuable knowledge out of this huge bulk of information. In that vein, low-rank representations (LRRs), which seek low-dimensional embeddings of data have naturally appeared. In an effort to reduce computational complexity and improve estimation performance, LRR has been viewed via a matrix factorization (MF) perspective. Recently, low-rank MF (LRMF) approaches have been proposed for tackling the inherent weakness of MF, i.e., the unawareness of the dimension of the low-dimensional space where data reside. Herein, inspired by the merits of iterative reweighted schemes for sparse recovery and rank minimization, we come up with a generic low-rank promoting regularization function. Then, focusing on a specific instance of it, we propose a regularizer that imposes column-sparsity jointly on the two matrix factors that result from MF, thus promoting low-rankness on the optimization problem. The low-rank promoting properties of the resulting regularization term are brought to light by mathematically showing that it is actually a tight upper bound of a specific version of the weighted nuclear norm. The problems of denoising and matrix completion are redefined according to the new LRMF formulation and solved via efficient alternating iteratively reweighted least squares type algorithms. Theoretical analysis of the algorithms regarding the convergence and the rates of convergence to stationary points is provided. The effectiveness of the proposed algorithms is verified in diverse simulated and real data experiments.
机译:如今,在不同的应用程序域中可获得大量数据,这促使人们部署复杂的工具以从大量信息中提取有价值的知识。因此,自然而然地出现了寻求数据的低维嵌入的低秩表示(LRR)。为了降低计算复杂度并提高估计性能,已从矩阵分解(MF)角度对LRR进行了研究。近来,已经提出了低秩MF(LRMF)方法来解决MF的固有弱点,即,不知道数据所驻留的低维空间的维数。在此,受稀疏恢复和等级最小化的迭代重加权方案的优点启发,我们提出了通用的低等级促进正则化函数。然后,针对它的特定实例,我们提出一种正则化器,该正则化器将列稀疏性强加于MF导致的两个矩阵因子上,从而促进了对优化问题的低排名。通过数学表明,它实际上是加权核规范的特定版本的严格上限,从而揭示了所得正则化项的低阶促进性质。根据新的LRMF公式重新定义了去噪和矩阵完成的问题,并通过有效的交替迭代加权最小二乘类型算法来解决。提供了关于收敛性和收敛到固定点速率的算法的理论分析。在各种模拟和真实数据实验中验证了所提出算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号