首页> 外文会议>ICPR 2012;International Conference on Pattern Recognition >Ensemble learning for change-point prediction
【24h】

Ensemble learning for change-point prediction

机译:集成学习以预测变化点

获取原文

摘要

In this paper, we propose a novel algorithm for the problem of predicting change-points. We assume that the causes for change-points can be characterized by the time interval between a change-point and its symptom. Based on this assumption, we first generate weak classifiers for capturing each characteristic, and then build an ensemble classifier with the weak classifiers. Experimental results show our algorithm improves the F-measure by 11% in the best case.
机译:在本文中,我们提出了一种用于预测变化点的新算法。我们假设可以通过变化点及其症状之间的时间间隔来表征变化点的原因。基于此假设,我们首先生成用于捕获每个特征的弱分类器,然后使用该弱分类器构建整体分类器。实验结果表明,在最佳情况下,我们的算法将F值提高了11%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号