首页> 外文会议>ICPR 2012;International Conference on Pattern Recognition >An improved EEMD model for feature extraction and classification of gunshot in public places
【24h】

An improved EEMD model for feature extraction and classification of gunshot in public places

机译:改进的EEMD模型用于公共场所枪支特征提取和分类

获取原文

摘要

Ensemble empirical mode decomposition (EEMD) is a noise-assisted adaptive data analysis method. The key of EEMD is to add Gauss white noise into the signal to overcome mode-mixing problem caused by original empirical mode decomposition (EMD). Because the noise in public places is natural noise with alpha stable distribution, in this paper we proposes an improved EEMD by using symmetric alpha stable (SaS) distribution instead of the Gauss distribution, and applies the improved EEMD for extracting gunshot feature. Using the improved EEMD, firstly we decompose gunshot signals into a finite number of intrinsic mode functions (IMF). Then, we use the energy ratio of each IMF components to original signal as gunshot feature for classification. The results of simulating experiment show that the improved EEMD method has good generalization abilities for the feature extraction of gunshot in public noise places.
机译:集成经验模式分解(EEMD)是一种噪声辅助的自适应数据分析方法。 EEMD的关键是将高斯白噪声添加到信号中,以克服原始经验模式分解(EMD)引起的模式混合问题。由于公共场所的噪声是具有α稳定分布的自然噪声,因此,本文提出了一种使用对称α稳定(SaS)分布而不是高斯分布的改进EEMD,并将改进的EEMD用于提取枪声特征。首先,使用改进的EEMD,我们将枪声信号分解为有限数量的本征模式函数(IMF)。然后,我们将每个IMF组件与原始信号的能量比作为射击特征进行分类。仿真实验结果表明,改进的EEMD方法具有较好的泛化能力,可以有效地提取公共噪声场所的枪声特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号