首页> 外文会议>ICPR 2012;International Conference on Pattern Recognition >Does one rotten apple spoil the whole barrel?
【24h】

Does one rotten apple spoil the whole barrel?

机译:一个烂苹果会破坏整个酒桶吗?

获取原文

摘要

Multiple Instance Learning (MIL) is concerned with learning from sets (bags) of objects (instances), where the individual instance labels are ambiguous. In MIL it is often assumed that positive bags contain at least one instance from a so-called concept in instance space. However, there are many MIL problems that do not fit this formulation well, and hence cause traditional MIL algorithms, which focus on the concept, to perform poorly. In this work we show such types of problems and the methods appropriate to deal with either situation. Furthermore, we show that an approach that learns directly from dissimilarities between bags can be adapted to deal with either problem.
机译:多实例学习(MIL)涉及从对象(实例)的集合(包)中进行学习,其中各个实例标签不明确。在MIL中,通常假设阳性袋至少包含一个来自实例空间中所谓概念的实例。但是,有许多MIL问题不能很好地适合此公式,因此导致关注该概念的传统MIL算法的性能较差。在这项工作中,我们展示了这类问题以及适用于两种情况的方法。此外,我们表明,可以直接从袋子之间的差异中学习的方法可以适用于处理任何一个问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号