首页> 外文会议>ICPR 2012;International Conference on Pattern Recognition >Analyzing the information entropy of states to optimize the number of states in an HMM-based off-line handwritten Arabic word recognizer
【24h】

Analyzing the information entropy of states to optimize the number of states in an HMM-based off-line handwritten Arabic word recognizer

机译:在基于HMM的离线手写阿拉伯文字识别器中分析状态的信息熵以优化状态数

获取原文

摘要

HMM is one of the most popular methods to model sequential signals and plays a significant role in the field of off-line handwritten Arabic word recognition research. However, the structure of an HMM including the number of states has to be determined initially and can hardly be updated during the training process. A novel analytic algorithm based on the information entropy of states in an HMM to optimize the number of states will be proposed in this paper. Information entropy is defined as an evaluation criterion of the activity of a state. According to principle of maximum entropy, states with minor information entropy do not possess so enough capability to represent actual observations that they should be deleted. Experiments on IFN/ENIT database show that the algorithm in this paper can bring approximately 3%–6% increase to correct recognition rate from the best performance of system with constant states.
机译:HMM是对顺序信号进行建模的最受欢迎的方法之一,并且在离线手写阿拉伯语单词识别研究领域中发挥着重要作用。但是,包括状态数在内的HMM的结构必须首先确定,并且在训练过程中几乎无法更新。提出了一种基于HMM状态信息熵的优化状态数的解析算法。信息熵被定义为状态活动的评估标准。根据最大熵的原理,具有较小信息熵的状态不具有足够的能力来表示实际观察结果,因此应将其删除。在IFN / ENIT数据库上进行的实验表明,本文的算法可以从具有恒定状态的系统的最佳性能中使识别率提高约3%–6%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号