首页> 外文会议>Hybrid Systems: Computation and Control >Learning and Detecting Emergent Behavior in Networks of Cardiac Myocytes
【24h】

Learning and Detecting Emergent Behavior in Networks of Cardiac Myocytes

机译:学习和检测心脏心肌细胞网络中的紧急行为

获取原文
获取原文并翻译 | 示例

摘要

We address the problem of specifying and detecting emergent behavior in networks of cardiac myocytes, spiral electric waves in particular, a precursor to atrial and ventricular fibrillation. To solve this problem we: (1) Apply discrete mode-abstraction to the cycle-linear hybrid automata (CLHA) we have recently developed for modeling the behavior of myocyte networks; (2) Introduce the new concept of spatial-superposition of CLHA modes; (3) Develop a new spatial logic, based on spatial-superposition, for specifying emergent behavior; (4) Devise a new method for learning the formulae of this logic from the spatial patterns under investigation; and (5) Apply bounded model checking to detect (within milliseconds) the onset of spiral waves. We have implemented our methodology as the Emerald tool-suite, a component of our EHA framework for specification, simulation, analysis and control of excitable hybrid automata. We illustrate the effectiveness of our approach by applying EMERALD to the scalar electrical fields produced by our CellExcite simulator.
机译:我们解决了指定和检测心脏心肌细胞网络(特别是螺旋电波),心房和心室纤维性颤动的先兆行为的问题。为了解决这个问题,我们:(1)将离散模式抽象应用于我们最近开发的用于建模肌细胞网络行为的循环线性混合自动机(CLHA); (2)引入了CLHA模式空间叠加的新概念; (3)开发一种基于空间叠加的新空间逻辑,用于指定紧急行为; (4)设计一种新方法,以从所研究的空间模式中学习这种逻辑的公式; (5)应用有界模型检查来检测(在毫秒内)螺旋波的开始。我们已将我们的方法学作为Emerald工具套件实施,这是EHA框架的组成部分,用于规范,模拟,分析和控制可激发混合自动机。我们通过将EMERALD应用于CellExcite模拟器产生的标量电场来说明该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号