首页> 外文会议>Hybrid Systems: Computation and Control >Reachability of Uncertain Nonlinear Systems Using a Nonlinear Hybridization
【24h】

Reachability of Uncertain Nonlinear Systems Using a Nonlinear Hybridization

机译:使用非线性杂交的不确定非线性系统的可达性

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we investigate nonlinear reachability computation in presence of model uncertainty, via guaranteed set integration. We show how this can be done by using the classical Mueller's existence theorem. The core idea developed is to no longer deal with whole sets but to derive instead two nonlinear dynamical systems which involve no model uncertainty and which bracket in a guaranteed way the space reachable by the original uncertain system. We give a rule for building the bracketing systems. In the general case, the bracketing systems obtained are only piecewise C~k-continuously differential nonlinear systems and hence can naturally be modeled with hybrid automata. We show how to derive the hybrid model and how to address mode switching. An example is given with a biological process.
机译:在本文中,我们通过保证集积分研究了存在模型不确定性的非线性可达性计算。我们展示了如何通过使用经典的穆勒存在定理来做到这一点。提出的核心思想是不再处理整个集合,而是推导两个非线性动力学系统,这些系统不涉及模型不确定性,并且以有保证的方式将原始不确定性系统可到达的空间括起来。我们给出了建立包围系统的规则。在一般情况下,获得的包围系统只是分段的Ck连续微分非线性系统,因此自然可以用混合自动机建模。我们展示了如何推导混合模型以及如何解决模式切换。举一个生物学过程的例子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号