The analysis of hybrid systems exhibiting probabilistic behaviour is notoriously difficult. To enable mechanised analysis of such systems, we extend the reasoning power of arithmetic satisfiability-modulo-theory solving (SMT) by a comprehensive treatment of randomized (a.k.a. stochastic) quantification over discrete variables within the mixed Boolean-arithmetic constraint system. This provides the technological basis for a fully symbolic analysis of probabilistic hybrid automata. Generalizing SMT-based bounded model-checking of hybrid automata [2,11], stochastic SMT permits the direct and fully symbolic analysis of probabilistic bounded reachability problems of probabilistic hybrid automata without resorting to approximation by intermediate finite-state abstractions.
展开▼