首页> 外文会议>Graph structures for knowledge representation and reasoning >Learning Bayes Nets for Relational Data with Link Uncertainty
【24h】

Learning Bayes Nets for Relational Data with Link Uncertainty

机译:学习Bayes网络以获取具有链接不确定性的关系数据

获取原文
获取原文并翻译 | 示例

摘要

We present an algorithm for learning correlations among link types and node attributes in relational data that represent complex networks. The link correlations are represented in a Bayes net structure. This provides a succinct graphical way to display relational statistical patterns and support powerful probabilistic inferences. The current state of the art algorithm for learning relational Bayes nets captures only correlations among entity attributes given the existence of links among entities. The models described in this paper capture a wider class of correlations that involve uncertainty about the link structure. Our base line method learns a Bayes net from join tables directly. This is a statistically powerful procedure that finds many correlations, but does not scale well to larger datasets. We compare join table search with a hierarchical search strategy.
机译:我们提出了一种算法,用于学习表示复杂网络的关系数据中的链接类型和节点属性之间的相关性。链接相关性以贝叶斯网络结构表示。这提供了一种简洁的图形方式来显示关系统计模式并支持强大的概率推论。在存在实体之间的链接的情况下,用于学习关系贝叶斯网络的最新技术算法仅捕获实体属性之间的相关性。本文中描述的模型捕获了更广泛的相关类,其中涉及有关链接结构的不确定性。我们的基线方法直接从联接表中学习贝叶斯网络。这是一个统计上有效的过程,可以找到许多相关性,但无法很好地扩展到较大的数据集。我们将联接表搜索与分层搜索策略进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号