首页> 外文会议>Graph Drawing; Lecture Notes in Computer Science; 4372 >Parameterized st-Orientations of Graphs: Algorithms and Experiments
【24h】

Parameterized st-Orientations of Graphs: Algorithms and Experiments

机译:图的参数化st-方向:算法和实验

获取原文
获取原文并翻译 | 示例

摘要

st-orientations (st-numberings) or bipolar orientations of undirected graphs are central to many graph algorithms and applications. Several algorithms have been proposed in the past to compute an st-orientation of a biconnected graph. However, as indicated in [1], the computation of more than one st-orientation is very important for many applications in multiple research areas, such as this of Graph Drawing. In this paper we show how to compute such orientations with certain (parameterized) characteristics in the final st-oriented graph, such as the length of the longest path. Apart from Graph Drawing, this work applies in other areas such as Network Routing and in tackling difficult problems such as Graph Coloring and Longest Path. We present primary approaches to the problem of computing longest path parameterized siorientations of graphs, an analytical presentation (together with proof of correctness) of a new O(m log~5 n) (O(m log n) for planar graphs) time algorithm that computes such orientations (and which was used in [1]) and extensive computational results that reveal the robustness of the algorithm.
机译:无向图的st方向(st编号)或双极方向是许多图算法和应用程序的核心。过去已经提出了几种算法来计算双向图的st-方向。但是,如[1]所示,对于多个研究领域中的许多应用(例如Graph Drawing),计算多个st方向非常重要。在本文中,我们展示了如何在最终的st定向图中计算具有某些(参数化)特征的定向,例如最长路径的长度。除“图形绘制”外,这项工作还适用于其他领域,例如“网络路由”和解决难题,例如“图形着色”和“最长路径”。我们提出了解决最长路径参数化图方向性问题的主要方法,一种新的O(m log〜5 n)(平面图为O(m log n))时间算法的解析表示(以及正确性证明)可以计算出这样的方向(并在[1]中使用过),并获得了广泛的计算结果,这些结果揭示了算法的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号