首页> 外文会议>General Assembly and Scientific Symposium of the International Union of Radio Science >Sub-Nyquist sampling and machine learning based online automatic modulation classifier for multi-carrier waveform
【24h】

Sub-Nyquist sampling and machine learning based online automatic modulation classifier for multi-carrier waveform

机译:基于亚奈奎斯特采样和机器学习的多载波波形在线自动调制分类器

获取原文

摘要

Reconfigurable terminals capable of adapting their transmission parameters such as modulation scheme, data and coding rates are desired to enhance the quality of service along with energy and spectral efficiency. However, spectrum bandwidth and time delay constraints limit the explicit sharing of these parameters and hence, they need to be estimated blindly. Though significant work has been done in blind parameter estimation, the task becomes non-trivial when reconfigurable terminals employ sub-Nyquist sampling (SNS) for wideband signal digitization. The proposed work presents the SNS and blind reconstruction based automatic modulation classifier (AMC) to blindly identify the modulation scheme of wideband multi-carrier signal, e.g. OFDM waveform. Simulation results along with experimental results on the proposed USRP testbed show that the classification accuracy of SNS based AMC approaches to that of Nyquist sampling based AMC with increase in signal to noise ratio given that the received signal is sufficiently sparse in the frequency.
机译:期望能够适应其传输参数(例如调制方案,数据和编码速率)的可重新配置的终端,以提高服务质量以及能量和频谱效率。但是,频谱带宽和时间延迟限制限制了这些参数的明确共享,因此,需要盲目地估计它们。尽管在盲参数估计方面已经进行了大量工作,但是当可重新配置的终端采用次奈奎斯特采样(SNS)进行宽带信号数字化时,这项任务变得不那么重要。拟议的工作提出了SNS和基于盲重构的自动调制分类器(AMC),以盲目识别宽带多载波信号的调制方案,例如: OFDM波形。仿真结果以及在建议的USRP测试床上进行的实验结果表明,在接收信号的频率足够稀疏的情况下,基于SNS的AMC的分类精度接近基于Nyquist采样的AMC的分类精度,并且信噪比增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号