首页> 外文会议>Fuzzy Systems and Knowledge Discovery; Lecture Notes in Artificial Intelligence; 4223 >Computational Grid-Based 3-tier ART1 Data Mining for Bioinformatics Applications
【24h】

Computational Grid-Based 3-tier ART1 Data Mining for Bioinformatics Applications

机译:用于生物信息学应用的基于计算网格的3层ART1数据挖掘

获取原文
获取原文并翻译 | 示例

摘要

Computational Grid technology has been noticed as an issue to solve large-scale bioinformatics-related problems and improves data accuracy and processing speed on multiple computation platforms with distributed bioDATA sets. This paper focuses on a GPCR data mining processing which is an important bioinformatics application. This paper proposes a Grid-based 3-tier ART1 classifier which operates an ART1 clustering data mining using grid computational resources with distributed GPCR data sets. This Grid-based 3-tier ART1 classifier is able to process a large-scale bioinformatics application in guaranteeing high bioDATA accuracy with reasonable processing resources. This paper evaluates performance of the Grid-based ART1 classifier in comparing to the ART1-based classifier and the ART1 optimum classifier. The data mining processing time of the Grid-based ART1 classifier is 18% data mining processing time of the ART1 optimum classifier and is the 12% data mining processing time of the ART1-based classifier. And we evaluate performance of the Grid-based 3-tier ART1 classifier in comparing to the Grid-based ART1 classifier. As data sets become larger, data mining processing time of the Grid-based 3-tier ART1 classifier more decrease than that of the Grid-based ART1 classifier. Computational Grid in bioinformatics applications gives a great promise of high performance processing with large-scale and geographically distributed bioDATA sets.
机译:计算网格技术已被视为解决大规模生物信息学相关问题并提高具有分布式bioDATA集的多个计算平台上的数据准确性和处理速度的一个问题。本文着重于GPCR数据挖掘处理,这是重要的生物信息学应用。本文提出了一种基于网格的3层ART1分类器,该分类器使用具有分布式GPCR数据集的网格计算资源来运行ART1聚类数据挖掘。这种基于网格的3层ART1分类器能够处理大规模的生物信息学应用程序,以合理的处理资源保证较高的bioDATA准确性。与基于ART1的分类器和基于ART1的最佳分类器相比,本文评估了基于网格的ART1分类器的性能。基于Grid的ART1分类器的数据挖掘处理时间是ART1最佳分类器的18%数据挖掘处理时间,是基于ART1的分类器的12%数据挖掘处理时间。并且,与基于网格的ART1分类器相比,我们评估了基于网格的3层ART1分类器的性能。随着数据集的增加,基于网格的3层ART1分类器的数据挖掘处理时间比基于网格的ART1分类器的数据挖掘处理时间减少更多。生物信息学应用中的计算网格为使用大规​​模且地理分布的bioDATA集进行高性能处理提供了广阔前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号