首页> 外文会议>Fuzzy logic and soft computing applications >Efficient Data Mining Analysis of Genomics and Clinical Data for Pharmacogenomics Applications
【24h】

Efficient Data Mining Analysis of Genomics and Clinical Data for Pharmacogenomics Applications

机译:药物基因组学应用的基因组和临床数据的高效数据挖掘分析

获取原文
获取原文并翻译 | 示例

摘要

The identification of biomarkers for the estimation of cancer patients' survival is a crucial problem in oncology. The Affymetrix DMET microarray platform allows to determine the ADME gene variants of a patient and to correlate them with drug-dependent adverse events. We present a bioinformatics tool devoted to the discovery of gene variants correlated to a different response of cancer patients to drugs and able to compute the overall survival (OS) and progression-free survival (PFS) of cancer patients. The tool is based on the integration of DMET-Miner and OSAnalyzer. DMET-Miner is a data mining tool able to extract Association Rules from DMET datasets and OSAnalyzer is a software tool able to perform an automatic analysis of DMET data enriched with survival events. After presenting DMET-Miner and OSAnalyzer, we discuss a case study to highlight the usefulness of the pipeline constituted by DMET-Miner and OSAnalyzer when analyzing a large cohort of patients.
机译:鉴定生物标志物以评估癌症患者的生存是肿瘤学中的关键问题。 Affymetrix DMET微阵列平台可确定患者的ADME基因变体,并将其与药物依赖性不良事件相关联。我们提出了一种生物信息学工具,致力于发现与癌症患者对药物的不同反应相关的基因变异,并能够计算癌症患者的总体生存期(OS)和无进展生存期(PFS)。该工具基于DMET-Miner和OSAnalyzer的集成。 DMET-Miner是一个数据挖掘工具,能够从DMET数据集中提取关联规则,而OSAnalyzer是一个软件工具,能够对富含生存事件的DMET数据进行自动分析。在介绍了DMET-Miner和OSAnalyzer之后,我们将讨论一个案例研究,以突出显示由DMET-Miner和OSAnalyzer构成的管道在分析大量患者时的有用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号