首页> 外文会议>Fuzzy Information and Engineering; Advances in Soft Computing; 40 >A Survey of Fuzzy Decision Tree Classifier Methodology
【24h】

A Survey of Fuzzy Decision Tree Classifier Methodology

机译:模糊决策树分类器方法论综述

获取原文
获取原文并翻译 | 示例

摘要

Decision-tree algorithms provide one of the most popular methodologies for symbolic knowledge acquisition. The resulting knowledge, a symbolic decision tree along with a simple inference mechanism, has been praised for comprehensibility. The most comprehensible decision trees have been designed for perfect symbolic data. Over the years, additional methodologies have been investigated and proposed to deal with continuous or multi-valued data, and with missing or noisy features. Recently, with the growing popularity of fuzzy representation, some researchers have proposed to utilize fuzzy representation in decision trees to deal with similar situations. This paper presents a survey of current methods for FDT(Fuzzy Decision Tree)designs and the various existing issues. After considering potential advantages of FDTs over traditional decision tree classifiers, the subjects of FDT attribute selection criteria, inference for decision assignment, and decision and stopping criteria are discussed. To be best of our knowledge, this is the first overview of fuzzy decision tree classifier.
机译:决策树算法为符号知识的获取提供了最受欢迎的方法之一。所得到的知识,具有象征意义的决策树以及简单的推理机制,因其可理解性而受到赞誉。最可理解的决策树已设计用于完美的符号数据。多年来,已经研究并提出了其他方法来处理连续或多值数据,并且具有丢失或嘈杂的特征。近年来,随着模糊表示的日益普及,一些研究人员提出在决策树中利用模糊表示来处理类似情况。本文介绍了当前的FDT(模糊决策树)设计方法以及各种现有问题。在考虑了FDT相对于传统决策树分类器的潜在优势之后,讨论了FDT属性选择标准,决策分配推断以及决策和停止标准的主题。据我们所知,这是模糊决策树分类器的第一篇概述。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号