首页> 外文会议>Fundamentals of low-dimensional carbon nanomaterials >A CMOS Compatible Carbon Nanotube Growth Approach
【24h】

A CMOS Compatible Carbon Nanotube Growth Approach

机译:CMOS兼容碳纳米管生长方法

获取原文
获取原文并翻译 | 示例

摘要

In future technology nodes, 22nm and below, carbon nanotubes (CNTs) may provide a viable alternative to Cu as an interconnect material. CNTs exhibit a current carrying capacity (up to 10~9 A/cm~2), whilst also providing a significantly higher thermal conductivity (SWCNT ~ 5000 WmK) over Copper (10~6 A/cm~2 and -400WmK). However, exploiting such properties of CNTs in small vias is a challenging endeavor. In reality, to outperform Cu in terms of a reduction in via resistance alone, densities in the order of 1013 CNTs/cm2 are required. At present, conventional thermal CVD of carbon nanotubes is carried out at temperatures far in excess of CMOS temperature limits (400℃). Furthermore, high density CNT bundles are most commonly grown on insulating supports such as Al_2O_3 and SiO_2 as they can effectively stabilize metallic nanoparticles at elevated temperatures but this limits their application in electronic devices. To circumvent these obstacles we employ a remote microwave plasma to grow high density CNTs at a temperature of 400℃ on conductive underlayers such as TiN. We identify some critical factors important for high-quality CNTs at low temperatures such as control over the catalyst to underlayer interaction and plasma growth environment while presenting a fully CMOS compatible carbon nanotube synthesis approach
机译:在22nm及以下的未来技术节点中,碳纳米管(CNT)可能提供一种替代铜作为互连材料的可行方法。 CNT表现出载流能力(高达10〜9 A / cm〜2),同时还提供比铜(10〜6 A / cm〜2和-400WmK)更高的导热率(SWCNT〜5000 WmK)。然而,在小通孔中利用CNT的这种特性是一项艰巨的努力。实际上,仅就通孔电阻的降低而言,要优于Cu,就需要1013 CNTs / cm2左右的密度。目前,常规的碳纳米管热CVD是在远远超过CMOS温度极限(400℃)的温度下进行的。此外,高密度CNT束最常在绝缘载体(例如Al_2O_3和SiO_2)上生长,因为它们可以在高温下有效稳定金属纳米颗粒,但这限制了它们在电子设备中的应用。为了克服这些障碍,我们采用远程微波等离子体在400℃的TiN等导电底层上生长高密度CNT。我们确定了对于低温下高质量CNT重要的一些关键因素,例如控制催化剂与下层的相互作用以及等离子体生长环境,同时提出了一种完全兼容CMOS的碳纳米管合成方法

著录项

  • 来源
  • 会议地点 Boston MA(US);Boston MA(US)
  • 作者单位

    IMEC, 75 Kapeldreef, Leuven, Belgium , Technology Development Center, 650 Mitsuzawa, Hosaka-cho, Nirasaki, Yamanashi 407-0192, Japan;

    Tokyo Electron Ltd., Technology Development Center, 650 Mitsuzawa, Hosaka-cho, Nirasaki, Yamanashi 407-0192, Japan;

    IMEC, 75 Kapeldreef, Leuven, Belgium , Technology Development Center, 650 Mitsuzawa, Hosaka-cho, Nirasaki, Yamanashi 407-0192, Japan,Electrical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium;

    IMEC, 75 Kapeldreef, Leuven, Belgium , Technology Development Center, 650 Mitsuzawa, Hosaka-cho, Nirasaki, Yamanashi 407-0192, Japan;

    IMEC, 75 Kapeldreef, Leuven, Belgium , Technology Development Center, 650 Mitsuzawa, Hosaka-cho, Nirasaki, Yamanashi 407-0192, Japan,Center for Surface Chemistry and Catalysis, Katholieke Universiteit Leuven, Leuven, Belgium;

    IMEC, 75 Kapeldreef, Leuven, Belgium , Technology Development Center, 650 Mitsuzawa, Hosaka-cho, Nirasaki, Yamanashi 407-0192, Japan;

    IMEC, 75 Kapeldreef, Leuven, Belgium , Technology Development Center, 650 Mitsuzawa, Hosaka-cho, Nirasaki, Yamanashi 407-0192, Japan;

    IMEC, 75 Kapeldreef, Leuven, Belgium , Technology Development Center, 650 Mitsuzawa, Hosaka-cho, Nirasaki, Yamanashi 407-0192, Japan,Department.of Chemistry, Katholieke Universiteit Leuven, Leuven, Belgium;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 半导体技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号