首页> 外文会议>Fourth International Workshop on Advanced Computational Intelligence >Hydrologic data exploration and river flow forecasting using self-organizing map and support vector regression
【24h】

Hydrologic data exploration and river flow forecasting using self-organizing map and support vector regression

机译:使用自组织图和支持向量回归的水文数据勘探和河流流量预测

获取原文
获取原文并翻译 | 示例

摘要

The support vector regression (SVR) is a novel and robust machine learning approach that has been successfully applied to solve problems related to river flow forecasting. However, an important step in the SVR modeling methodology that has received little attention is the selection of appropriate model inputs. This paper presents an input determination method that can be used to select significant input variables to a SVR based river flow forecasting model. The forecasting model was used for modeling daily river flows in a humid basin with seasonal rainfall pattern. The input determination method was developed using self-organizing map (SOM). The SOM was utilized to explore all the potential model input variables and then to identify inputs that have a significant relationship with the output variable. Consequently, the knowledge extracted from the input determination process was used to improve SVR model performance. Empirical results indicated that input determination based on SOM was helpful for developing logically sound SVR forecasting models.
机译:支持向量回归(SVR)是一种新颖而强大的机器学习方法,已成功应用于解决与河流流量预测有关的问题。但是,SVR建模方法学中的一个很少受到关注的重要步骤是选择合适的模型输入。本文提出了一种输入确定方法,可用于选择基于SVR的河流流量预测模型的重要输入变量。该预测模型用于模拟具有季节性降雨模式的湿润盆地中的每日河流流量。使用自组织映射(SOM)开发了输入确定方法。利用SOM探索所有潜在的模型输入变量,然后识别与输出变量有显着关系的输入。因此,从输入确定过程中提取的知识可用于改善SVR模型的性能。实证结果表明,基于SOM的输入确定有助于开发逻辑上合理的SVR预测模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号