首页> 外文会议>Foundations of software science and computational structures >Lower Bounds on Witnesses for Nonemptiness of Universal Co-Buechi Automata
【24h】

Lower Bounds on Witnesses for Nonemptiness of Universal Co-Buechi Automata

机译:通用Co-Buechi自动机非空性证人的下限

获取原文
获取原文并翻译 | 示例

摘要

The nonemptiness problem for nondeterministic automata on infinite words can be reduced to a sequence of reachability queries. The length of a shortest witness to the nonemptiness is then polynomial in the automaton. Nonemptiness algorithms for alternating automata translate them to nondeterministic automata. The exponential blow-up that the translation involves is justified by lower bounds for the nonemptiness problem, which is exponentially harder for alternating automata. The translation to nondeterministic automata also entails a blow-up in the length of the shortest witness. A matching lower bound here is known for cases where the translation involves a 2~(O(n)) blow up, as is the case for finite words or Buechi automata.rnAlternating co-Buechi automata and witnesses to their nonemptiness have applications in model checking (complementing a nondeterministic Buechi word automaton results in a universal co-Buechi automaton) and synthesis (an LTL specification can be translated to a universal co-Buechi tree automaton accepting exactly all the transducers that realize it). Emptiness algorithms for alternating co-Buechi automata proceed by a translation to nondeterministic Buechi automata. The blow up here is 2~(O(n log n)) and it follows from the fact that, on top of the subset construction, the nondeterministic automaton maintains ranks to the states of the alternating automaton. It has been conjectured that this super-exponential blow-up need not apply to the length of the shortest witness. Intuitively, since co-Buechi automata are raemo-ryless, it looks like a shortest witness need not visit a state associated with the same set of states more than once. A similar conjecture has been made for the width of a transducer generating a tree accepted by an alternating co-Buechi tree automaton. We show that, unfortunately, this is not the case, and that the super-exponential lower bound on the witness applies already for universal co-Buechi word and tree automata.
机译:无限词上不确定自动机的非空问题可以简化为一系列可达性查询。那么,非空性的最短见证者的长度就是自动机中的多项式。交替自动机的非空算法将其转换为不确定自动机。非空性问题的下界证明了翻译涉及的指数爆炸,对于交替自动机而言,它的指数难度更大。转换为不确定性自动机还需要缩短最短证人的时间。对于翻译涉及2〜(O(n))爆炸的情况(如有限词或Buechi自动机的情况),此处具有匹配的下界是已知的。交替Buechi自动机和其非空性的见证人在模型中的应用检查(补充不确定的Buechi单词自动机会导致通用的Co-Buechi自动机)和综合(LTL规范可以转换为通用的Co-Buechi树型自动机,完全接受实现该功能的所有换能器)。交替co-Buechi自动机的空性算法通过转换为不确定Buechi自动机进行。这里的爆炸是2〜(O(n log n)),这是由于以下事实:在子集构造之上,不确定的自动机将等级维持在交替自动机的状态。据推测,这种超指数爆炸不需要适用于最短证人的时间。直观地讲,由于协同Buechi自动机是无raemo-ryry的,因此似乎最短的证人不需要多次访问与同一状态集关联的状态。对于换能器的宽度已经做出了类似的推测,该换能器的宽度产生了由交替的联合布奇树自动机接受的树。我们不幸的是,事实并非如此,并且证人上的超指数下限已经适用于通用的共同Buechi单词和树自动机。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号