首页> 外文会议>Foundations of software science and computational structures >Normal Bisimulations in Calculi with Passivation
【24h】

Normal Bisimulations in Calculi with Passivation

机译:带钝化的算术中的正常双仿真

获取原文
获取原文并翻译 | 示例

摘要

Behavioral theory for higher-order process calculi is less well developed than for first-order ones such as the π-calculus. In particular, effective coinductive characterizations of barbed congruence, such as the notion of normal bisimulation developed by Sangiorgi for the higher-order π-calculus, are difficult to obtain. In this paper, we study bisimulations in two simple higher-order calculi with a passivation operator, that allows the interruption and thunkification of a running process. We develop a normal bisimulation that characterizes barbed congruence, in the strong and weak cases, for the first calculus which has no name restriction operator. We then show that this result does not hold in the calculus extended with name restriction.
机译:与诸如π演算之类的一阶演算相比,高阶演算的行为理论欠发达。尤其是,很难获得倒刺全等的有效共归描述,例如Sangiorgi为高阶π演算开发的正常双仿真概念。在本文中,我们使用钝化算符研究了两个简单的高阶计算中的双仿真,从而允许中断和简化运行过程。对于没有名称限制算子的第一个演算,我们开发了一个正常的双仿真,该仿真模拟了在强和弱情况下的带刺同余特征。然后,我们证明此结果在使用名称限制扩展的演算中不成立。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号