【24h】

Separating Graph Logic from MSO

机译:将图形逻辑与MSO分开

获取原文
获取原文并翻译 | 示例

摘要

Graph logic (GL) is a spatial logic for querying graphs introduced by Cardelli et al. It has been observed that in terms of expressive power, this logic is a fragment of Monadic Second Order Logic (MSO), with quantification over sets of edges. We show that the containment is proper by exhibiting a property that is not GL definable but is definable in MSO, even in the absence of quantification over labels. Moreover, this holds when the graphs are restricted to be forests and thus strengthens in several ways a result of Marcinkowski. As a consequence we also obtain that Separation Logic, with a separating conjunction but without the magic wand, is strictly weaker than MSO over memory heaps, settling an open question of Brochenin et al.
机译:图逻辑(GL)是用于查询Cardelli等人介绍的图的空间逻辑。已经观察到,就表达能力而言,此逻辑是Monadic二阶逻辑(MSO)的一部分,具有对边集的量化。我们通过显示出不是GL可定义但在MSO中可定义的属性来显示这种容纳是正确的,即使没有标记的量化也是如此。此外,当图形被限制为森林时,这种情况仍然存在,因此是Marcinkowski的结果以多种方式增强了图形。结果,我们还获得了具有分离连接但没有魔杖的分离逻辑,它在内存堆上比MSO严格更弱,这解决了Brochenin等人的一个悬而未决的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号