首页> 外文会议>Symposium on fluid power and motion control 2018 >A NUMERICAL APPROACH FOR THE EVALUATION OF A CAPILLARY VISCOMETER EXPERIMENT
【24h】

A NUMERICAL APPROACH FOR THE EVALUATION OF A CAPILLARY VISCOMETER EXPERIMENT

机译:毛细管粘度计实验评价的数值方法。

获取原文
获取原文并翻译 | 示例

摘要

The dynamic viscosity of a fluid is an important input parameter for the investigation of elastohydrodynamic contacts within tribological simulation tools. In this paper, a capillary viscometer is used to analyse the viscosity of a calibration fluid for diesel injection pumps. Capillary viscometers are often used for the determination of viscosities that show a significant dependence on shear rate, pressure and temperature such as polymer melts or blood. Therefore most of the research on corrections of measured viscosities have been made using polymer melts. A new method is presented to shorten the effort in evaluating the capillary experiment. The viscosity itself can be calculated from experimental data. Essential parameters are the radius of the capillary, its length, the capillary flow and the pressure difference over the capillary. These quantities are used in the Hagen-Poiseuille equation to calculate the viscosity, assuming laminar and monodirectional flow. According to said equation, the viscosity depends on the geometry and the pressure gradient. A typical capillary viscometer contains three main flow irregularities. First the contraction of the flow at the capillary inlet, second the expansion of the flow at the capillary outlet and third the inlet section length of the flow after which the velocity profile is fully developed. These flow phenomena cause pressure losses, which have to be taken into account, as well as the altered length of the laminar flow in the capillary. Furthermore, the temperature difference over the capillary also affects the outlet flow. Therefore, in this paper, a newly developed method is proposed, which shortens the effort in pressure and length correction. The method is valid for viscometers, which provide a single phase flow of the sampling fluid. Furthermore, the proposed correction is suited for arbitrary geometries. A numerical approach is chosen for the analysis of the experiment. In order to facilitate the experimental procedure of a capillary viscometer, a special algorithm was developed. The numerical approach uses a static CFD simulation, which is recursively passed through. If a termination condition, regarding the pressure difference between two cycles, is fulfilled, the real viscosity can be calculated in the usual way from the Hagen-Poiseuille equation. A special advantage of the proposed experimental evaluation is the general applicability for arbitrary geometries. In this paper, the procedure is validated with a well-known reference fluid and compared to data, which was gathered from a quartz viscometer experiment with the same fluid. Therefore, experiments are conducted with the capillary viscometer and compared at various pressure and temperature levels.
机译:流体的动态粘度是研究摩擦学仿真工具中的弹性流体动力接触的重要输入参数。在本文中,毛细管粘度计用于分析柴油喷射泵校准液的粘度。毛细管粘度计通常用于确定粘度,该粘度对剪切速率,压力和温度有很大的依赖性,例如聚合物熔体或血液。因此,大多数有关测量粘度校正的研究都是使用聚合物熔体进行的。提出了一种新方法来缩短评估毛细管实验的工作量。粘度本身可以从实验数据计算。基本参数是毛细管的半径,长度,毛细管流量以及毛细管上的压差。在假设层流和单向流动的情况下,这些量用于Hagen-Poiseuille方程中以计算粘度。根据所述方程,粘度取决于几何形状和压力梯度。典型的毛细管粘度计包含三个主要的流量不规则性。首先,在毛细管入口处的流体收缩,其次,在毛细管出口处的流体膨胀,以及第三,流体的入口截面长度,其后速度曲线完全形成。这些流动现象会导致压力损失,必须将其考虑在内,以及毛细管中层流长度的变化。此外,毛细管上的温差也会影响出口流量。因此,本文提出了一种新开发的方法,该方法缩短了压力和长度校正的工作量。该方法对提供单相采样流体的粘度计有效。此外,提出的校正适合于任意几何形状。选择一种数值方法进行实验分析。为了方便毛细管粘度计的实验程序,开发了一种特殊的算法。数值方法使用静态CFD仿真,然后递归进行。如果满足关于两个循环之间的压差的终止条件,则可以按照通常的方式从Hagen-Poiseuille方程计算真实粘度。提出的实验评估的一个特殊优势是对任意几何形状的普遍适用性。在本文中,该程序已使用众所周知的参比液进行了验证,并与从相同粘度的石英粘度计实验中收集的数据进行了比较。因此,使用毛细管粘度计进行实验,并在各种压力和温度水平下进行比较。

著录项

  • 来源
    《Symposium on fluid power and motion control 2018》|2018年|V001T01A009.1-V001T01A009.12|共12页
  • 会议地点 Bath(GB)
  • 作者单位

    RWTH Aachen University Institute for Fluid Power Drives and Systems Aachen, NRW, Germany;

    RWTH Aachen University Institute for Fluid Power Drives and Systems Aachen, NRW, Germany;

    RWTH Aachen University Institute for Fluid Power Drives and Systems Aachen, NRW, Germany;

    Clausthal University of Technology Institute of Tribology and Energy Conversion Machinery Clausthal-Zellerfeld, Niedersachsen, Germany;

    Clausthal University of Technology Institute of Tribology and Energy Conversion Machinery Clausthal-Zellerfeld, Niedersachsen, Germany;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号