首页> 外文会议>First International Conference on Informatics and Computational Intelligence >Action Recognition by Local Space-Time Features and Least Square Twin SVM (LS-TSVM)
【24h】

Action Recognition by Local Space-Time Features and Least Square Twin SVM (LS-TSVM)

机译:通过本地时空特征和最小二乘孪生SVM(LS-TSVM)进行动作识别

获取原文
获取原文并翻译 | 示例

摘要

In this research a new approach ffor human action recognition is proposed. At first, local spaace-time features extracted which recently becomes a popular video representation. Feature extraction is done wwith use of Harris detector algorithm and Histogram of Optiical Flow (HOF) descriptor. Then we apply a new extendedd SVM classifier called least square Twin SVM (LS-TSVM)). LS-TSVM is a binary classifier that does classification by use of two non¬parallel hyperplanes and it is four times faster than the classical SVM while the precision is better. WWe investigate the performance of LS-TSVM method on a totall of 25 persons on KTH dataset. Our experiments on the standdard KTH action dataset shown that our method improvees state-of-the-art results by achieving 95.8%, 96.3% and 97.2%% accuracy in case of 1-fold , 5-fold and 10-fold cross validation.
机译:在这项研究中,提出了一种用于人类动作识别的新方法。首先,提取本地空间时间特征,这些特征最近成为流行的视频表示形式。使用哈里斯检测器算法和光流直方图(HOF)描述符进行特征提取。然后,我们应用了一个新的扩展SVM分类器,称为最小二乘Twin SVM(LS-TSVM)。 LS-TSVM是一种通过使用两个不平行的超平面进行分类的二进制分类器,它的速度是经典SVM的四倍,而精度更高。我们调查了LS-TSVM方法在KTH数据集上总共有25个人的性能。我们在标准KTH作用数据集上的实验表明,在进行1倍,5倍和10倍交叉验证的情况下,我们的方法通过达到95.8%,96.3%和97.2 %%的准确度来改善最新结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号