首页> 外文会议>Fifth workshop on building and evaluating resources for biomedical text mining >Named Entity Recognition in Swedish Health Records with Character-Based Deep Bidirectional LSTMs
【24h】

Named Entity Recognition in Swedish Health Records with Character-Based Deep Bidirectional LSTMs

机译:基于字符的深度双向LSTM在瑞典健康记录中被命名为实体识别

获取原文
获取原文并翻译 | 示例

摘要

We propose an approach for named entity recognition in medical data, using a character-based deep bidirectional recurrent neural network. Such models can learn features and patterns based on the character sequence, and are not limited to a fixed vocabulary. This makes them very well suited for the NER task in the medical domain. Our experimental evaluation shows promising results, with a 60% improvement in F_1 score over the baseline, and our system generalizes well between different datasets.
机译:我们提出了一种使用基于字符的深度双向递归神经网络在医学数据中进行命名实体识别的方法。这样的模型可以基于字符序列学习特征和样式,并且不限于固定的词汇表。这使得它们非常适合医疗领域的NER任务。我们的实验评估显示出令人鼓舞的结果,F_1得分比基线提高了60%,并且我们的系统在不同数据集之间具有很好的概括性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号