首页> 外文会议>Fields of logic and computation >Definability of Combinatorial Functions and Their Linear Recurrence Relations
【24h】

Definability of Combinatorial Functions and Their Linear Recurrence Relations

机译:组合函数的可定义性及其线性递归关系

获取原文
获取原文并翻译 | 示例

摘要

We consider functions of natural numbers which allow a combinatorial interpretation as counting functions (speed) of classes of relational structures, such as Fibonacci numbers, Bell numbers, Catalan numbers and the like. Many of these functions satisfy a linear recurrence relation over Z or Z_m and allow an interpretation as counting the number of relations satisfying a property expressible in Monadic Second Order Logic (MSOL). C. Blatter and E. Specker (1981) showed that if such a function f counts the number of binary relations satisfying a property expressible in MSOL then f satisfies for every m ∈ N a linear recurrence relation over Z_m. In this paper we give a complete characterization in terms of definability in MSOL of the combinatorial functions which satisfy a linear recurrence relation over Z, and discuss various extensions and limitations of the Specker-Blatter theorem.
机译:我们考虑自然数函数,它允许组合解释为关系结构类的计数函数(速度),例如斐波那契数,贝尔数,加泰罗尼亚数等。这些函数中的许多函数都满足Z或Z_m上的线性递归关系,并且可以解释为计算满足Monadic二阶逻辑(MSOL)可表达的属性的关系数。 C. Blatter和E. Specker(1981)指出,如果这样的函数f计算满足MSOL可表示性质的二元关系数,则f对于每个m∈N都满足Z_m上的线性递归关系。在本文中,我们给出了满足Z上线性递归关系的组合函数在MSOL中的可定义性的完整描述,并讨论了Specker-Blatter定理的各种扩展和局限性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号