首页> 外文会议>Fault Diagnosis and Tolerance in Cryptography; Lecture Notes in Computer Science; 4236 >Robust Finite Field Arithmetic for Fault-Tolerant Public-Key Cryptography
【24h】

Robust Finite Field Arithmetic for Fault-Tolerant Public-Key Cryptography

机译:容错公钥密码学的鲁棒有限域算法

获取原文
获取原文并翻译 | 示例

摘要

We present a new approach to fault tolerant public key cryptography based on redundant arithmetic in finite rings. Redundancy is achieved by embedding non-redundant field or ring elements into larger rings via suitable homomorphisms obtained from modulus scaling. Our approach is closely related to, but not limited by the exact definition of cyclic binary and arithmetic codes. We present a framework for system-designers that allows flexible trade-offs between circuit area and desired level of fault tolerance. Our method applies to arithmetic in prime fields and extension fields of characteristic 2 where it serves two mutually beneficial purposes: The redundancy of the larger ring can be used for error detection, while its modulus has a special low Hamming-weight form, lending itself particularly well to efficient modular reduction.
机译:我们提出了一种基于有限环冗余算法的容错公钥密码学新方法。通过从模量缩放获得的适当同态将非冗余场或环元素嵌入更大的环中来实现冗余。我们的方法与循环二进制和算术代码的确切定义紧密相关,但不受其限制。我们为系统设计人员提供了一个框架,该框架允许在电路面积和所需的容错水平之间进行灵活的权衡。我们的方法适用于特征2的质数域和扩展域中的算术,在该算法中它具有两个互惠互利的目的:较大环的冗余可用于错误检测,而其模数具有特殊的低汉明重量形式,特别适合于自身有效地减少模块数量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号