【24h】

Towards Cataloguing Potential Derivations of Personal Data

机译:编制个人数据的潜在分类目录

获取原文

摘要

The General Data Protection Regulation (GDPR) has established transparency and accountability in the context of personal data usage and collection. While its obligations clearly apply to data explicitly obtained from data subjects, the situation is less clear for data derived from existing personal data. In this paper, we address this issue with an approach for identifying potential data derivations using a rule-based formalisation of examples documented in the literature using Semantic Web standards. Our approach is useful for identifying risks of potential data derivations from given data and provides a starting point towards an open catalogue to document known derivations for the privacy community, but also for data controllers, in order to raise awareness in which sense their data collections could become problematic.
机译:通用数据保护条例(GDPR)在个人数据的使用和收集方面建立了透明度和责任制。尽管其义务明确适用于从数据主体显式获得的数据,但对于从现有个人数据中得出的数据,情况并不太清楚。在本文中,我们使用一种基于语义Web标准的文献中记录的示例的基于规则的形式化方法,来识别潜在的数据派生,从而解决了这一问题。我们的方法对于识别从给定数据衍生出潜在数据的风险非常有用,并提供了一个开放目录的起点,既可以记录隐私群体的已知衍生记录,也可以记录数据控制者,从而提高人们对其数据收集的感知能力成为问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号