首页> 外文会议>Evolutionary multi-criterion optimization >A New Memory Based Variable-Length Encoding Genetic Algorithm for Multiobjective Optimization
【24h】

A New Memory Based Variable-Length Encoding Genetic Algorithm for Multiobjective Optimization

机译:一种新的基于记忆的变长编码遗传算法用于多目标优化

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new memory-based variable-length encoding genetic algorithm for solving multiobjective optimization problems. The proposed method is a binary implementation of the NSGA2 and it uses a Hash Table for storing all the solutions visited during algorithm evolution. This data structure makes possible to avoid the re-visitation of solutions and it provides recovering and storage of data with low computational cost. The algorithm memory is used for building crossover, mutation and local search operators with a parameter-less variable-length encoding. These operators control the neighborhood based on the density of points already visited on the region of the new solution to be evaluated. Two classical multiobjective problems are used to compare two variations of the proposed algorithm and two variations of the binary NSGA2. A statistical analysis of the results indicates that the memory-based adaptive neighborhood operators are able to provide significant improvement of the quality of the Pareto-set approximations.
机译:本文提出了一种新的基于内存的变长编码遗传算法,用于解决多目标优化问题。所提出的方法是NSGA2的二进制实现,它使用哈希表存储算法演化过程中访问的所有解决方案。这种数据结构可以避免重新访问解决方案,并以低计算量提供数据的恢复和存储。算法存储器用于通过无参数可变长度编码来构建交叉,变异和局部搜索运算符。这些运算符根据要评估的新解决方案区域上已经访问的点的密度来控制邻域。使用两个经典的多目标问题来比较所提出算法的两个变体和二进制NSGA2的两个变体。结果的统计分析表明,基于内存的自适应邻域算子能够显着提高Pareto集近似值的质量。

著录项

  • 来源
  • 会议地点 Ouro Preto(BR);Ouro Preto(BR)
  • 作者单位

    Centro Federal de Educagao Tecnologica de Minas Gerais, Department of Computer Engineering Av. Amazonas, 7675, Belo Horizonte, MG, 30510-000, Brazil;

    Centro Federal de Educagao Tecnologica de Minas Gerais, Department of Electrical Engineering Av. Amazonas, 7675, Belo Horizonte, MG, 30510-000, Brazil;

    Universidade Federal de Minas Gerais, Department of Mathematics Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 理论、方法;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号