首页> 外文会议>Evolutionary multi-criterion optimization >Interactive Multiobjective Mixed-Integer Optimization Using Dominance-Based Rough Set Approach
【24h】

Interactive Multiobjective Mixed-Integer Optimization Using Dominance-Based Rough Set Approach

机译:基于优势的粗糙集方法的交互式多目标混合整数优化

获取原文
获取原文并翻译 | 示例

摘要

We present a new methodology for dealing with interactive multiobjective optimization in case of mixed-integer variables. The preference information elicited by the Decision Maker (DM) in course of the interaction is processed using the Dominance-based Rough Set Approach (DRSA). This permits to ask the DM simple questions and obtain in return a decision model expressed in terms of easily understandable "if..., then..." decision rules. In each iteration, the current set of decision rules is presented to the DM with the proposal of selecting one of them considered the most representative. The selected decision rule specifies some minimal requirements that the DM desires to be achieved by the objective functions. This information is translated into a set of constraints which are added to the original problem restricting the space of feasible solutions. Moreover, we introduce one simple but effective algorithm, called bound-and-cut, that efficiently reduces the set of feasible values of the integer variables. This process continues iteratively until the part of the Pareto front that is interesting for the DM can be exhaustively explored with respect to the integer variables. The bound-and-cut algorithm can be embedded in an Evolutionary Multiobjective Optimization (EMO) method, which permits to compute a reasonable approximation of the considered part of the Pareto front. A subset of representative solutions can be selected from this approximation and presented to the DM in the dialogue phase of each iteration.
机译:我们提出了一种在混合整数变量的情况下处理交互式多目标优化的新方法。使用基于优势的粗糙集方法(DRSA)处理决策者(DM)在交互过程中引发的偏好信息。这允许向DM提出简单的问题,并获得以易于理解的“如果……那么……”决策规则表达的决策模型作为回报。在每次迭代中,都会向DM提供当前的决策规则集,并建议选择其中一个最具代表性的决策规则。所选决策规则指定DM希望通过目标功能实现的一些最低要求。该信息被转换为一组约束,这些约束被添加到限制可行解决方案空间的原始问题中。此外,我们介绍了一种简单但有效的算法,称为“边界和切入”,可有效减少整数变量的可行值集。此过程将反复进行,直到可以针对整数变量详尽地探究帕累托前沿对DM感兴趣的部分为止。边界切割算法可以嵌入到进化多目标优化(EMO)方法中,该方法可以计算帕累托前沿考虑部分的合理近似值。可以从该近似值中选择代表性解决方案的子集,并在每次迭代的对话阶段中将其提供给DM。

著录项

  • 来源
  • 会议地点 Ouro Preto(BR);Ouro Preto(BR)
  • 作者单位

    Faculty of Economics, University of Catania, 95129 Catania, Italy;

    Faculty of Economics, University of Catania, 95129 Catania, Italy;

    Institute of Computing Science, Poznari University of Technology, Poznari, and Systems Research Institute, Polish Academy of Sciences, 00-441 Warsaw, Poland;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 理论、方法;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号