首页> 外文会议>Evolutionary multi-criterion optimization >A Taxonomy of Online Stopping Criteria for Multi-Objective Evolutionary Algorithms
【24h】

A Taxonomy of Online Stopping Criteria for Multi-Objective Evolutionary Algorithms

机译:多目标进化算法的在线停止准则分类

获取原文
获取原文并翻译 | 示例

摘要

The use of multi-objective evolutionary algorithms for solving black-box problems with multiple conflicting objectives has become an important research area. However, when no gradient information is available, the examination of formal convergence or optimality criteria is often impossible. Thus, sophisticated heuristic online stopping criteria (OSC) have recently become subject of intensive research. In order to establish formal guidelines for a systematic research, we present a taxonomy of OSC in this paper. We integrate the known approaches within the taxonomy and discuss them by extracting their building blocks. The formal structure of the taxonomy is used as a basis for the implementation of a comprehensive MATLAB toolbox. Both contributions, the formal taxonomy and the MATLAB implementation, provide a framework for the analysis and evaluation of existing and new OSC approaches.
机译:利用多目标进化算法解决具有多个目标冲突的黑盒问题已成为重要的研究领域。但是,当没有可用的梯度信息时,通常无法检查形式收敛或最优标准。因此,复杂的启发式在线停止标准(OSC)最近已成为深入研究的主题。为了建立系统研究的正式指南,我们在本文中提出了OSC的分类法。我们将已知方法整合到分类法中,并通过提取其构建基块进行讨论。分类法的正式结构用作实现全面的MATLAB工具箱的基础。正式的分类法和MATLAB的实现都为分析和评估现有和新的OSC方法提供了一个框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号