首页> 外文会议>Evolutionary computation, machine learning and data mining in bioinformatics. >Optimizing the Edge Weights in Optimal Assignment Methods for Virtual Screening with Particle Swarm Optimization
【24h】

Optimizing the Edge Weights in Optimal Assignment Methods for Virtual Screening with Particle Swarm Optimization

机译:使用粒子群算法的虚拟筛选优化分配方法中优化边缘权重

获取原文
获取原文并翻译 | 示例

摘要

Ligand-based virtual screening experiments are an important task in the early drug discovery stage. In such an experiment, a chemical database is searched for molecules with similar properties to a given query molecule. The optimal assignment approach for chemical graphs has proven to be a successful method for various cheminformatic tasks, such as virtual screening. The optimal assignment approach assumes all atoms of a query molecule to have the same importance. This assumption is not realistic in a virtual screening for ligands against a specific protein target. In this study, we propose an extension of the optimal assignment approach that allows for assigning different importance to the atoms of a query molecule by weighting the edges of the optimal assignment. Then, we show that particle swarm optimization is able to optimize these edge weights for optimal virtual screening performance. We compared the optimal assignment with optimized edge weights to the original version with equal weights on various benchmark data sets using sophisticated virtual screening performance metrics. The results show that the optimal assignment with optimized edge weights achieved a considerably better performance. Thus, the proposed extension in combination with particle swarm optimization is a valuable approach for ligand-based virtual screening experiments.
机译:基于配体的虚拟筛选实验是药物发现早期阶段的重要任务。在这样的实验中,在化学数据库中搜索与给定查询分子具有相似性质的分子。化学图的最佳分配方法已被证明是成功完成各种化学格式化任务(例如虚拟筛选)的方法。最佳分配方法假设查询分子的所有原子都具有相同的重要性。在虚拟筛选针对特定蛋白质靶标的配体时,这种假设是不现实的。在这项研究中,我们提出了一种最佳分配方法的扩展,该方法允许通过加权最佳分配的边来为查询分子的原子分配不同的重要性。然后,我们证明了粒子群优化技术能够优化这些边缘权重,以获得最佳的虚拟筛选性能。我们使用完善的虚拟筛选性能指标,将具有优化边缘权重的最佳分配与具有相同权重的原始版本进行了比较,以对各种基准数据集进行了加权。结果表明,具有优化边缘权重的最佳分配获得了相当好的性能。因此,与粒子群优化相结合的拟议扩展是基于配体的虚拟筛选实验的一种有价值的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号