首页> 外文会议>Evolutionary computation, machine learning and data mining in bioinformatics. >A GPU-Based Multi-swarm PSO Method for Parameter Estimation in Stochastic Biological Systems Exploiting Discrete-Time Target Series
【24h】

A GPU-Based Multi-swarm PSO Method for Parameter Estimation in Stochastic Biological Systems Exploiting Discrete-Time Target Series

机译:基于GPU的多群PSO算法在随机生物系统离散目标序列开发中的参数估计

获取原文
获取原文并翻译 | 示例

摘要

Parameter estimation (PE) of biological systems is one of the most challenging problems in Systems Biology. Here we present a PE method that integrates particle swarm optimization (PSO) to estimate the value of kinetic constants, and a stochastic simulation algorithm to reconstruct the dynamics of the system. The fitness of candidate solutions, corresponding to vectors of reaction constants, is defined as the point-to-point distance between a simulated dynamics and a set of experimental measures, carried out using discrete-time sampling and various initial conditions. A multi-swarm PSO topology with different modalities of particles migration is used to account for the different laboratory conditions in which the experimental data are usually sampled. The whole method has been specifically designed and entirely executed on the GPU to provide a reduction of computational costs. We show the effectiveness of our method and discuss its performances on an enzymatic kinetics and a prokaryotic gene expression network.
机译:生物系统的参数估计(PE)是系统生物学中最具挑战性的问题之一。在这里,我们提出了一种集成粒子群优化(PSO)来估计动力学常数值的PE方法,以及一种用于重建系统动力学的随机仿真算法。对应于反应常数向量的候选解的适用性定义为模拟动力学和一组实验量度之间的点对点距离,这些量度是使用离散时间采样和各种初始条件进行的。具有不同颗粒迁移方式的多群PSO拓扑用于说明通常在其中采集实验数据的不同实验室条件。整个方法经过专门设计,并完全在GPU上执行,以降低计算成本。我们展示了我们方法的有效性,并讨论了其在酶动力学和原核基因表达网络上的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号