首页> 外文会议>Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics; Lecture Notes in Computer Science; 4447 >Amino Acid Features for Prediction of Protein-Protein Interface Residues with Support Vector Machines
【24h】

Amino Acid Features for Prediction of Protein-Protein Interface Residues with Support Vector Machines

机译:支持向量机的蛋白质-蛋白质界面残基预测氨基酸特征

获取原文
获取原文并翻译 | 示例

摘要

Knowledge of protein-protein interaction sites is vital to determine proteins' function and involvement in different pathways. Support Vector Machines (SVM) have been proposed over the recent years to predict protein-protein interface residues, primarily based on single amino acid sequence inputs. We investigate the features of amino acids that can be best used with SVM for predicting residues at proteinprotein interfaces. The optimal feature set was derived from investigation into features such as amino acid composition, hydrophobic characters of amino acids, secondary structure propensity of amino acids, accessible surface areas, and evolutionary information generated by PSI-BLAST profiles. Using a backward elimination procedure, amino acid composition, accessible surface areas, and evolutionary information generated by PSI-BLAST profiles gave the best performance. The present approach achieved overall prediction accuracy of 74.2% for 77 individulal proteins collected from the Protein Data Bank, which is better than the previously reported accuracies.
机译:蛋白质-蛋白质相互作用位点的知识对于确定蛋白质的功能和参与不同途径至关重要。近年来已经提出了支持向量机(SVM),主要基于单个氨基酸序列输入来预测蛋白质-蛋白质界面残基。我们调查了可以与SVM一起最佳地用于预测蛋白质界面上残基的氨基酸特征。最佳特征集来自对以下特征的研究,例如氨基酸组成,氨基酸的疏水特性,氨基酸的二级结构倾向,可及的表面积以及由PSI-BLAST谱生成的进化信息。使用后向消除程序,氨基酸成分,可及的表面积和PSI-BLAST谱图生成的进化信息可提供最佳性能。对于从蛋白质数据库中收集到的77种个体蛋白质,本方法的总体预测准确度达到74.2%,优于先前报道的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号